Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana.
نویسندگان
چکیده
Leaves of Arabidopsis thaliana grown under elevated or ambient CO2 (700 or 370 micromol mol(-1), respectively) were examined for physiological, biochemical and structural changes. Stomatal characters, carbohydrate and mineral nutrient concentrations, leaf ultrastructure and plant hormone content were investigated using atomic absorption spectrophotometry, transmission electron microscopy and enzyme-linked immunosorbent assay (ELISA). Elevated CO2 reduced the stomatal density and stomatal index of leaves, and also reduced stomatal conductance and transpiration rate. Elevated CO2 increased chloroplast number, width and profile area, and starch grain size and number, but reduced the number of grana thylakoid membranes. Under elevated CO2, the concentrations of carbohydrates and plant hormones, with the exception of abscisic acid, increased whereas mineral nutrient concentrations declined. These results suggest that the changes in chloroplast ultrastructure may primarily be a consequence of increased starch accumulation. Accelerated A. thaliana growth and development in elevated CO2 could in part be attributed to increased foliar concentrations of plant hormones. The reductions in mineral nutrient concentrations may be a result of dilution by increased concentrations of carbohydrates and also of decreases in stomatal conductance and transpiration rate.
منابع مشابه
مشکلات روشهای موجود و ارائه دو روش جدید کشت هیدروپونیک گیاه آرابیدوپسیس تالیانا
Arabidopsis thaliana is a suitable model plant for genetic and molecular biology studies in higher plants. However, its hydroponic culture for biochemical and physiological studies is a challenge due to small size, capillary roots and little biomass at maturity. Several cultural systems have been suggested for Arabidopsis thaliana hydroponic culture, each having special advantages and disadvant...
متن کاملGrowth, cell walls, and UDP-Glc dehydrogenase activity of Arabidopsis thaliana grown in elevated carbon dioxide1
The impact of elevated CO2 (1000μmol/mol) was assessed on the common weed, Arabidopsis thaliana (Landsberg erecta), which is used as a model plant system. Elevated CO2 stimulated relative growth rate (RGR) and leaf area gain of Arabidopsis beginning from the cotyledon stage and continuing through the juvenile stage. This early advantage in growth enabled the plants grown in elevated CO2 to gain...
متن کاملFunctional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana
Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...
متن کاملPhysiological and Transcriptome Responses to Combinations of Elevated CO2 and Magnesium in Arabidopsis thaliana
The unprecedented rise in atmospheric CO2 concentration and injudicious fertilization or heterogeneous distribution of Mg in the soil warrant further research to understand the synergistic and holistic mechanisms involved in the plant growth regulation. This study investigated the influence of elevated CO2 (800 μL L(-1)) on physiological and transcriptomic profiles in Arabidopsis cultured in hy...
متن کاملMetabolic and Ionic Changes in Leaves of Zygophyllum fabago L. Depending on Age
Introduction: Zygophyllum fabago L. is a C3 type plant and tolerant to drought with a widespread distribution in arid and semi-arid regions. For two reasons, the study of the physiological behavior of the Z. fabago in its natural environment is important. First, various species of Zygophyllum are often not used for animal feeding or fuel preparation, while all parts of the plant (leaf, stem, ro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The New phytologist
دوره 172 1 شماره
صفحات -
تاریخ انتشار 2006